Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens.

نویسندگان

  • K P Nevin
  • D R Lovley
چکیده

Studies with the dissimilatory Fe(III)-reducing microorganism Geobacter metallireducens demonstrated that the common technique of separating Fe(III)-reducing microorganisms and Fe(III) oxides with semipermeable membranes in order to determine whether the Fe(III) reducers release electron-shuttling compounds and/or Fe(III) chelators is invalid. This raised doubts about the mechanisms for Fe(III) oxide reduction by this organism. However, several experimental approaches indicated that G. metallireducens does not release electron-shuttling compounds and does not significantly solubilize Fe(III) during Fe(III) oxide reduction. These results suggest that G. metallireducens directly reduces insoluble Fe(III) oxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide.

Geobacter metallireducens is an important model organism for many novel aspects of extracellular electron exchange and the anaerobic degradation of aromatic compounds, but studies of its physiology have been limited by a lack of techniques for gene deletion and replacement. Therefore, a genetic system was developed for G. metallireducens by making a number of modifications in the previously des...

متن کامل

Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.

Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds th...

متن کامل

Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components ...

متن کامل

Title: Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter

24 Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. 25 Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, 26 but a number of the most thoroughly studied outer surface components of G. sulfurreducens, 27 particularly c-type cytochromes, are not well conserved among Geobacter species. In order to 28 identify cellu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2000